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sumlmY

An analysis method and a design method are developed for one-
Mmensiond., compressibleflow with friction, heat transfer, and area
change in vaneless &Mf users with arbitrary profiles in the axial-ratial
plane. The effects of mixing losses due to nonuniform flow conditions
at the impeller discharge are not considered. In the analysis method
the variations in fluid properties, including the velocity and flow
direction, are determined as a function of radius for a prescribed vari-
ation in diffuser wall spacing with radius. In the design method the
variations in effective diffuser wall spacing and in the fluid proper-
ties are determined as a function of radius for an arbitrary prescribed
variation in one fluid property.. For efficient diffuser des”ignsthe
fluid property selected and the manner in which its variation is pre-
scribed will depend on viscous flow effects that are considered in
boundary-layer studies but are not investigated in this report.

As a result of numerical examples it is concluded that: (1) Even
with relatively low friction coefficients and neglecting mixing losses
near the impeller tip, the friction losses in most vaneless diffuser
designs are considerable, as indicated by computed diffuser efficiencies
in the low 80rs, and these losses result from the usually large ratios
of wetted surface to flow area in vaneless diffusers. (2) Vaneless
diffuser efficiencies canbe improved by increased compressor flow rates
for a given impeller tip radius so that the diffuser walls can be sDaced
farther
without

In

apart (thus, reducing the ratio of wetted surface to flow &ea) “
increasing the length of the flow path in the diffuser.

11’lTIIODUCTIOll .

radial- and mixed-flow centrifugal compressors the vaneless
diffuser is an annular duct
and of increasing radius in

.

(fig. 1) i~edlateiy following the impeller
the direction of flow. The high tangential
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velocity of the fluid enter5mg the vaneless diffuser from the impeller
decreases with increasing radius and, because the tangential velocity is ‘“
generally the largest velocity component at the hpeller discharge, the
vaneless diffuser is an effective mmns of diffusing the fluid, that is, .
of converting the velocity head to static pressure. The principle by
which this conversion is effected is demonstrated by the case for fric-
tionless flow
assuming that
the moment of

from which as
decreases and

in the absence of heat transfer. For this case, and
flow conditions sre @arm in the tangential direction,
mommtum of the fluid is constant so that

~r = constant

the radius r increases the tangential velocity ~
therefore the pressure rises (assuming relatively small

changes in other components of velocity).

_ the advmtagm d the vaneless dMfuser iS the fact that

choke flow occurs only if the meridional velocity ~ (veZocity com-
ponent normal to the annulus area) is sonic. This condition usually
corresponds to such high flow rates that choke flow occurs
impeller, instead of the ~fuser as is the usual case for
fusers. The compressor operating range is therefme wider
diffusers.

Another, and perhaps the most important, advantage of

in the -
varieddif-
with vaneless .

.
the vaneless

dMfuser is the fact that M the tangential +elocity at the impeller
discharge is supersonic the tangential velocity decelerates from super-
sonic to subsonic velocities without shock losses.

Opposedto these several advantages of the vaneless diffuser is the
disad~ntage, for aircraft propulsion, of a large frontal area. ‘I’his
disadvantage may be circumvented to some extent by the use of semi.vane-
less diffusers (fig. 2) in which, to Mffuse the fluid more rapidly and
thus decrease the frontal area of the compressor, vanes are placed in
the diffuser following a vaneless section in which the velocity is
reduced from supersonic to subsonic magnitudes. Thus, shock losses are
avoided by diffusing the flow to subsonic velocities in the vaneless
diffuser and the frontal area of the compressor is somewhat reducedby
the more rapid dWfusion in the variedsection.

In order to analyze the performance of vaneless and semivaneless
diffusers and in order to design these &Mfusers for optimum performance
(including the proper setting of the vane angles in semivaneless dif- .
fusers), it is necessary to have adequate theoretical methods of pre-
dicting the variation in flow characteristics through the diffusers.
These methods should include the effects of diffuser geometry, com-
pressibility, heat transfer, friction, and ~ losses caused by the
nonuniform flow conditions at the impeller discharge.



3

.

lMCA TN 2610

Published
less diffusers

work on the analysis and design of vaneless and semi.vane-
is not extensive (references1 and 2, for example). In

reference 1 a one-dimensionalme~od of analysis is-developed-for incom-
pressib~e flow with friction but no mixing losses in vaneless diffusers
with constant wall.spacing and pure radial flow. In reference 2 a one-
dimensional method of design is developed fw compressible flow with
friction. The method assumes the flow path is a logarithmic spiral and
neglects heat transfer and m~n losses.

In the present report methods of analysis and design, carried out
at the NACA Lewis laboratory, sre developed for one-dimensional, com-
pressible flow with friction, heat transfer, and arbitrary variation in
passage height in vaneless diffusers with arbitrary curvature in the
meridional (sxial-radial)plane. The effect of mixing losses is not
considered. In the analysis method and in general for the design method
the flow direction, or flow path, is not specified but is a dependent
variable determined by the solution. In the design method the variaticm
in diffuser wall spacing with radius is determined for a prescribed
variation in one fluid property. For efficient dif’fuserdesigns the
selection of the one fluid property,and its optimum prescribed variatim
will depend on viscous flow effects that are considered in boun&ry-
layer studies but will not be investigated in this report. The methods
are an extension of the work in reference 3 for one-dhensional gas flow
in ducts with prescribed flow direction.

.

THECIRYa? MErHoD

Differential equations are developed that relate the change in
dependent variables with radius to the design and operating character-
istics of the vaneless M&user. The application of these differential
equations to the analysis of flow in vaneless diffusers and to the
design of vaneless diffusers for prescribed distributions of flow condi-
tions with radius is described in a later section.

Preliminary Considerations

Coordinate system. - The coordinate system for a
surface of revolution generated about the axis of the

point on the mean
compressor by the

.

center line between the front and rear shroud of the vaneless diffuser
is shown in figures 3 and 4. The cylindrical coordinates r, e, and
z give the radial, tangential, and axial positions of the point, respec-
tively. The effective diffuser height h (fig. 3) measured across the
passage in the direction normal to the mean surface of revolution is a
function of r only

—.—-—.—e —. ..— .-
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h = h(r) (1)
.

(al s@ols are defined in appendix.A.) The effective height of the
diffuser at each point on the mean smface of revolution is equal to the :
geometric height of the dMfuser “minusthe assumed displacement thick-
ness of the boundary layer on the diffuser walls. Use of this effective
height rather than the geometric height is required by continuity con-
siderations in order to give the proper average value of the velocity
component normal to the cross-sectional flow area of the vaneless dif-
fuser. Only the effective height of the diffuser is considered in this
report; no investigation is made of the boundary-layer displacement
thickness, which can be assumed or estimated from boundary-layer theory.

The slope of the
the vaneless diffuser
function of r only,

center iine between the front and rear shroud of
determines the angle a (fig. 3), which is a

tan-l *
a=

==
a(r) (2)

Assumptions . - The principal assumptions of the analysis and desi~ .
methods are that flow conditions are uniform across the vaneless dif-
fuser along the height h and that flow conditions are uniform in the
tangential direction 19. *s, the flow becomes one-tiensi~l, being .,

a function only of the radius along the mean surface of revoluticm. If
the boundary-layer profile is ignored, the accuracy of tb assumption
that flow conditions may be considered udform across the vaneless dif-
fuser in the direction of h depends on: (1) the angle a, (2) the
derivative of a with respect to r, (3) the derivative of h with
respect to r, and (4) the ratio h/r. For values of a approximately
equal to 90° the assumption is accurate provided dh/dr and da/dr are
small. For values of u less than 90° the inaccuracy of the assumption
will depend on the ratio _h/r and the derivative da/dr; for the
limit5ng case in which h/r and dKL/d.rapproach zero the assumption is
good for all values of a. In practice the values of h/r for vaneless
diffusers =e usually small and the mean shroud curvature d.a/& should
be small to avoid boundary-layer separation. Thus the assumption of
uniform flow conditions across the passage along h should be accurate
for all values of a encountered, except for variations clueto the
boundary-- profile.

The motion on the mean surface of revolution is assumed to be
steady and.,because flow conditions are as-d to be uniform in the
tangential direction, mung losses resulting from nonuniform flow con-
ditiam in the tangetiial direction at ths impeller discharge are neg-
lected. These losses are relatively high, but experiments (reference4, .

.

_— .—. -.
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for e=mpl.e) indicate that they take place in the immediate vicinity of
the impeller discharge and may be neglected in the remainder of the
vaneless diffuser. The effects of these Iudxinnlosses canbe accounted
for (approximately)by adjustments in the flow conditions (pressure,
density, velocity, and flow direction, for example) at the diffuser
inlet.

Velocity components. - The velocity q at a point on the mean sur-
face of revolution is tangent to the surface and has compcmmts q ,

%) and q= in the r-, 6-, and z-tiections, respectively. In
this analysis it is convenient to consider the meridional velocity ~
(instead of qr and qz), which is tangent to the center line between
the front and rear shroud of the diffuser in the meridional piane
(fig. 3) and is related to qr and qz by

The flow direction P on the mean surface of revolution is related to
~ and ~ by (fig. 5)

from which

~.qsinp

(4a)

@b)

~=qcosp (4C)

F1.uidparticle. - A fluid particle on the mean surface of revolu-
tion is shown in figure 4. This particle has the dimensions r M and
dr/sin a on the surface of revolution and the height h normal to the
surface.

Outline of method. - The state of the fluid at any point (r) on the
mean surface of revolution is described by three thermodynamic proper-
ties, by the fluid velocity, andby the flow direction. These five
properties canbe determined from five fundamental relations: (1) con-
tinuity, (2) equilibrium in the &irection of ~ (meridional equili-
brium), (3) equilibrium tithe direction of ~ (tangential equili-
brium), (4) equation of state, and (5) the heat-transfer equation. In

-. —. .——.—_ — .—. —-—... — .
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addition to the~e five fundamental relations certain definitions are
required to express the resulting equations in terms of the desired L“
properties. The properties that will be used in this analysis to
describe the state of the fluid will be the static pressure p, the
static density p, the total temperature Tt, the local M&ch nuniber M,

.

and the flaw direction ~.

Mach nunber. - The local Mach ?nmiber M is defined by

I.?=&

where 7 is the ratio of specific heats, g is the gravitational
acceleration, I?+ is the gas constant, and T is the local, static
temperature. From equation (5)

Total temperature.

or

- The total temperature T* is defined by

Tt= T+&

P

Tt=T(l+&@)

(5)

(5a)

(6)

where J is the mmhanical equivalent of
heat at constant pressure. l?romeqyation

heat and Cp is the specific
(6)

lmtl
—— =.
T+dr T

(6a)

I?romequations (5a) and (6a)

.—.— .— —. -. —.—
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1 @2()1 ldlmt

7 ——+——
qdx—=~@~ Ttdr

.

Fundamental Relations

continuity. - The continuity equation for one-dimensional com-
pressible flbw in vaneless diffusers is

(ah)

p~rh = constant

from which

where changes
revolution.

ldp 1% 1~+1——- — (7)
~=+%lldr+hdr 2=0

in r are understood to occur along the mean surface of

.

Meridional equilibrium. - The equation for meridional equilibrium
of a fluid particle (fig. 6) in the direction of ~ on the mean sur-
face of revolution is obtained from a balance of the pressure forces,
shear forces, and inertia forces (appendix B)

g dp Cfqz Cos p Q2 mm—— +
pdr hsina

=—-qm -&-
r

where Cf is the skin-friction coefficient.

(8)

Tan@ ntial equilibrium. - The equation for tangential equilibrium
of the fluid particle in figure 6 is obtained from a balance of the
shear forces and the inertia forces (appendilxB)

.

.

2
Cfq sin #3

h sin a
‘%

Equation of state. - By definition
equation of state

@@+%n%
df r

a perfect gas satisfies the

(9)

— —..—— .. . .. . . .— --——— ——
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(lOa) ,,

(lOb)

Heat-transfer equation. - The heat-transfer rate to the diffuser
casing must equal the heat-transfer rate from the fluid. The heat-
transfer rate to the Uffuser casing is given approximatelyby

(ha)

where he is the coefficient of heat transfer, Tv is the wall, or
diffuser casing, temperature, and @ ‘3-sthe heat-tra~fer rate. ~qua-
tion (ha) assumes that the recovery factor at the wall is 1.0 (refer-
ence 3, p. A-328).

The heat-transfer rate from the fluid is given

‘%
Q=p~2nhcpF dr

Finally, from equations [ha) and (llb)

1 a!rt 2h’

()

Tw
—— = —- 1
Tt dr ~~hcp sfi a ‘t

approximatelyby

(m))

(llC)

Equation (llc) gives the change in total temperature with radius as a
%ction of the-heat-transfer-coefficient hi.

Reynoldsl analogy. - An appr~te value for h’ in equation (llc)
can be obtained from the Reynoldst analog between friction and heat
transfer (reference3)

.

..—- _.._
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I&om which equation (1.1.c)becomes

.

.

‘( )ldTt cfsec13!l&
-1 (12)

<r * hsina Ti

/. --

Equation (12) gives the change in total temperature with radius as a
function of the skin-friction coefficient and the ratio of wall tempera-
ture to total temperature of the fluid.

Review. - A review of the theory up to this point indicates nine
unknowns and nine equations for the analysis method. The unknowns are: .

P) P> T) T j My q> ~~ Q) a~ p. (For the *si@ method h iS
iunknown an replaces one of these nine quantities, which is then speci-

fied as a’function of r. The angle a is a known function of r for
both analysis and design methods.) The nine equations are:

I l@yation

Tangential velocity
Meridional velocity
Mach nuuiber(clefinition)
Total temperature (clefinition)
Continuity
Meridional equilibrium
Tangential equilibrium
Equation of state
Heat-transfer equation

(4b)
(4C)
(5a)
(6a)
(7)
(8)
(9)

-(lOb)
(llC) or (M)

The solution for the analysis method consists in cotiining the nine
equatfmns to obtain three differential equations involwtng three
unlmowns: ‘ty ‘~

and p. These three clifferential equations, in
turn, can be combined to solve, by numerical methods, for
~ successively.

Tt> M> ad
(For the design method an auxiliary equation is devel-

1 a in terms of the prescribed fluid property as a functionoped for — —
hdr

of r. The three unlmowm Tt~ M> and B are then obtained in the
same manner outlined for the analysis method.)

Final Equations

Auxiliary differential equation. - An auxiliary &lfferential equa-
tion for the pressure p in terms of Tt, M) and ~ is obtained frcm
the equilibrium equations, which, after expressing ~ and
terms of q and P, combine to give

~ in

——— ——— —.- . —— .—. — ——
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But,

so that, from equations

loll? YM?
——= -—
Pm 2

gcP 1 a2 cf sec p
——= -— —-
~q2 & 2q2 ar hsina ‘

Pq2 7P!12—=— =
13 7m

7-$)$

‘(13a) ,J

(M-b)

(6b),(13a), and (13b)

.

L -1

where

!,

and where

and

where pa is the

P=

R=

H=

compressor-inlet

r

‘T

$=‘(R)

.

(13e)

sta&nation pressure, rm is Me
impeller”tip radius, and ~ is the effective diffuser height at the
impelIer tip. Equation (13c) is an auxiliary differential equation that
relates the change in P to the change in Tt and M? wit~ radius R.

Total temperature. - The change in Tt is given by equation (llc)
or (12), which from equations (1.3d)and (13e) become

.

-...

.. . -—. .
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.

and, for the case of Reynoldst analo~,

1 art t %7 ~()——u— —-

Tt (IR H COS ~ Tt

(14a)

(14b)

Mach znmiber.- In order to determine the differential equation for
the Mach number squared it is first necessary to express the second tezm
of the continuity equation (7) in terms of lmown variables. I&cm the
meridional equilibrium equation (8) together with equations (4) and
(E3b)

1 99 tan2p seczp 1
=—- —.z~ r 7M2 p

The first term of the continuity equation

dp cf sec ~
—. (15a)
dr h sin a

(7) is expressed in terms of
known variables by the equation of‘state (lOb) toge%x with equation (6al

Substituting equations (15a) and (lSb) into the continuity equation (7)
and combjig it with equations (13d) and (13e) result in

1

Hcosj3 Hd13 R
J

J

— .._ —. —— -- _ _.—
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(

.....

ldP
which, ccmibinedtith e~ati~ (=c ) to eli~te ~ ~j finally gives

b3M2_
$a

(71? - tan’$) –

L

H COS ~

Equation (15c) determines the change in

mean surface of revolution in terms of

equations (14a) or (14b).

Flow direction. - The differential
obtained from equation (4a)

..

1 ‘dtan p

tan ~ dr

1

laH sec’p
-—— _—
HdR R’

@5c)

M? with radius R along the
1

~

of

mt
which is known from

s

the flow direction ~ is

1

which from the tangential.equilibrium equation (9) and equation (15a)
becomes

.

and &rom equations (13c) and (15c)

(16)

L ‘,

.

i

.

Equations (14a) or (14b), (15c), and (16) are three differential equa-
tions that can be solved simultaneously for Tt, 1?, and ~.
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Pressure. -
R are lmown the
tion as follows:

After the variations in T+, l?, and P with i%iius
pressure P can

P~ql Cos pl

where the subscript 1 refers to

be obtain6d from the continuity equa-

T%r = pq cos ~ rh (17a) .

known conditions (appendix C) at the
. diffuser inlet (where R is~gqual to 1.0). From the equation of state
(lOa) and from the def&ition of_-Mch nmiber (equation (5)), equa-
tion (17a) becomes

Finally, from equations (6) and (13e)

Equation (17b) determines P firomthe known conditions at the diffuser
inlet and from the known values of T , ~, and ~ determined by the
simultaneous solution of equations (1~) or (14b), (15c), and (16).

After the quantities P, M?, Tt, and ~ are known, all other
quantities (p, T, q, ~, and @) can be determined directly from
equations (4), (5), (6), and the equation of state (lOa).

Flow path. - The Elm path on the mean surface of revolution in the
vaneless diffuser can be obtained from the known variation in tan ~
with R given by the solution of equation (16). From figure 7, which
shows the flow path on a developed view of the mean surface in the
vicinity of R,

‘anP=*
or

de tan.$ .
~= Rsina

(18)

Because ~ and a are lmown functions of R, equation (18) determines
the flow path on the mean surface of revolution.

.- —— — ..— —_
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Influence ccmfficients. - In some
venient or desirable to solve directly
dependent quantities rather than Tt,

IWCATIV 2610

analysis problems it may be con-
for one or more of the other
@, and 13. Also, in the design

problem it may be desired to specify one of these quantities as a func-

tion of R and to solve for the required value of ~~. For these

cases the change h the dependent variables l?,p, T, q, ,
h

and ~

M?
with radius R a ong the mean surface of revolution, as 1 as the
change in T ,

1
and ~, must be expressed in terms of the known

mt’
quantities ~ ~ (given by equations (14a) or (14b)), +, ~,

and 1 m– — (r& known in the design problem), which quantities are
HdR

multiplied by influence coefficients. Thus, if X is any one of the
dependent variables,

(19)

where 11 through 14 are influence coefficients that are determined

in the same way that equations f15c) and (16) were developed. The
influence coefficients for various dependent variables X are given in
the following table:

‘l-Y-
P I yM2

Influence Coefficients

13
2 14

did 2
-YM2 -yM2sec2~

F(7 sec2&tan2~) I -M? I -M2sec2~

(7-1)/ (71?-tan2~) -(7-l)M? -(7-l)l?sec2j3

(2 1*’)(tan2f3 -7l?) 2(1*) 2(1+ ~ M?)sec2~

2(tan2~ -7M2) 2 2 sec2P

#(tan2j3 -7 sec2~) I sec2p I sec2f3+M%an2p
I 1

sec2f3- 1? o sec2j3 - $

[
sec2~ 1+(7-l)M? -sec2j3 -2 sec2$

‘t

.

——.
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If 1? is equal to sec2p, the left side of equation (19) is\
equal to zero because lax~ ~ cannot be infinite. For this condition

(# . sec2~), which occurs when ~ is e~alto~elocal meedof
sound, that is when choke flow occurs (appendixD), equation (19)
becomes

15

(19a)

where the influence coefficients given in the table have %een substi-
tuted in equation (19) with # equal to sec2~. (All sets of influ-
ence coefficients result in the same equation (19a).) Equatim’(19a) is
a condition that must be satisfied at the location of choke flow in a
vaneless diffuser. In pmticular, Wheat transfer and f%iction We
absent, equation (19a) becomes

~cause HR is directly proportional tathe flow area, it is seen that
*chokeflow does not occur at the throat, or position of min3mum flow area

(S!gQ=o), but at a petit where the flow area is decreasing in the

direction of increasing R.

Small-stage efficiency. - The small-stage, or polytropic, efficiency
at a given radius R on the mean surface of revolution in a vaneless
diffuser is defined as the ratio of the ideal (iwming friction and heat
transfer) to t4e actual differential change in static enthalpy with
radius required to accomplish the actual differential change in static
pressure with radius. This definition leads to the following expressicm
for the small-stage efficiency q (appendixE)

.
lae

v
z== (20a)

L%+&
Pm Tt 13R

Equation (20a) indicates that in the absence of heat transfer
(dTt/dR=O) and friction (C = 0) the smd-1-stage efficiency is 100
percent. Also, for heat transfer from the fluid to the diffuser walls,

.

--—— -— .——- -. .—.—
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1 w
— — is negative and therefore resultg in an apparent increase in the
Tt dR
small-stage efficienq. Thus, in the presence of heat transfer, the
still-stage efficiency, as just d.efined, is not a good measure of the
performance of vaneless diffusers in that it is not a measure of the

.

magnitude of the losses involved. In the absence of heat transfer
aTt

is zero and equation (20a) can be rearra
K

nged to give (appendixE)

TJ=l -
~ (M?- sec2@)

(20b)

~ (71? - tan213)- cos p

If M? is equal.to sec2p (choke flow condition, appendix D), the
efficiency given by equation (20b) becomes indeterminate,because the
numerator of the fraction is zero and, from equation (19a), so is the
denominate.

NUMERICAL PROCEDURE

A specific numerical procedure is outlined for both the analysis
and design problems, however,~any other stanibd numerical procedure can
be used. In the analysis problem the variation in fluid propetiies
with R are determined for a specified geometry of the vaneless dif-
fuser. ~ the design problem the variation with R in one of the fluid
properties is prescribed and the remaining fluid properties together
with the variation in diffuser height E with radius R are deter-
mined. The numerical procedures for both the analysis and design prob-
lems are essentially the same but differ in detail and are therefore
discussed separately in this section.

A?ldySiS Problem

Primary quantitiqs. - In the anal is probIem the variation with
R in three primary quantities (Tt, F and P) sre obtained from
three differential equations: (14a) or’(14b), (1.5c),* (16). These
equations are nonlinear and it is necess~ to solve them by nnmerical
methods. The suggested stepwise procedure is as follows:

(1) The values of Tt, 1?, and ~ at the diffuser inlet are
estimated from the impeller design and operating characteristics
(a~endix C).

.



3s

.

.

.

NACA TN 2610

(2) At any radius
change in T+ (that is,

R, m Tt,
ATt) for a

17

l?, and tan f3 are known, the
small increase in R @at is,

AR) is comp~ted clirectlyfi~ equation (14a) or (14b). - -

(3) The change in 1? (that is, AM?) for the same small change
in R (that is, AR) is computed Uectlyfrom equation (15c) in which
1 at
.—
Tt dR

is obtained from step (2).

(4) Finally AtariP is computed from equation (16).

(5) Thus, at (R+ AR) the approximate values of Tt, l?, and
tan ~ are lmown from the values of Tt, M?, andtan~ atR and
the apprmd.mate values of ATt, AM2, and Atan ~ givenby steps (2)
through (4).

(6) At

1 dtan B
tan ~ dR
and (16) from
in step (5).

(7) The

(R+AR) are

and so forth,
and (6).

(8) The

(R + AR) appradmate values of L ~, ld
Tt= ~~ and

can then be determined by equations (14a) or (14b), (15c),

the approximate values

final values of ATt,

obtained directly from

at R

values
mined ‘fromthe known
the values of ATt,

of Tt, J?, and tan~ obtained

AM?, and Atanf3 between R and.
1 art

the arithmtic average of — —
TdR’

and (R + AR) as given in steps (2), (3), (47,

of Tt, M?, and tan p at (R + AR) are deter-
val.uesof Tt, @, and tan P at R and from
A@, and Atan J3 obtained in step (7).

(9) The stepwise procedure outlined in steps (2) through 8) is
repeated for small.values of [AR starting at R equal to 1.0 where
T,
&

M2, and tan ~ are obtained by step (1)) and continuing to the
fuser e-t. Tor the numerical exmqles of this report AR was 0.02,

0.03, and 0.05 for the first three increments and 0.10 for the remaining.

Secondary quantities. - After the distribution of Tt, M?, and
tan p with R are lnmwn, the distribution of P, p, T, q, ~, and ~
can be deterndned directly from equation (ii%) and from equation (4),
(5), (6), and the equation of state (lOa}.

Flow path. - The flow path on the mean surface of revolution in the
=?M310t3Sdiffuser is given by 13 as a function of R along the sur-
face. Because tan ~ and sin a are known functions of R, the flow
path (e = e (R)) can be determined by the numerical integration of
equation (18) assuming e equals zero at R equals 1.0.

—— — -—- ——
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Efficiency. - The small.-stage, or polytropic, efficiency q at
each radius R is given by equation (20a). The diffuser efficiency

(qD)R be~een ra~us R ewals 1=0 and R iS @ven bY equati~ (E6)
in appendixE.

Design Problem

In the design method the variation in effective diffuser wall
spacing with radius is determined for a prescribed variation in one
fluid property. For efficient diffuser designs the selection of the one
fluid property and its optimum prescribed variation will depend on
viscous flow effects that are considered in@undary-layer studies but
will not be investigated in this report. (Nor is the magnitude of the
boundary-layer displacement, required to obtain the geometric wall
spacing from the effective spacing, considered in this report.)

Auxiliary equation. - In the design problem the variation in H
with R iS unknown and must be determined to satisfy a specified varia-
tion in one characteristic of the flow (~, for example) with R. From

lathis specified variation in one characteristic of the flow ~m can be

determined from equation (19). The quantity AH between R and—

(R + AR) is obtained from the average value of ~ ~ at R and

(R+ AR).
$

er E has been determhed at (R + AR) the final values
of ATt, AP, and AtariB between R and (R + AR) are
obtained by t~e same procedure previously outlined for the analysis
problbm. The process starts at R equals 1.0 (where H equal~ 1.0)
and is repeated for specified increments of R up to the diffuser etit.

Complete solution. - After the variation in H, Tt, M?, and
tan j3 with R ae known, the variation in P, p, T, q, ~, and

?canbe determined directly from equation (li’b)and from equations (4 ,
(5), (6), and the equation of state (lOa). The flow path is determined
by equation (18) as outlined previasly, and the small-stage, or poly-
tropic, efficiency is determinedly equation (20a).

NUMERICAL IIxAMmEs

The numerical examples of this report are divided into three groups:
(1) effects of some operating conditions, (2) effects of diffuser wall
spacing, and (3) a vaneless diffuser design problem.

—— —
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.

Effects of Some

The first group of numerical
transfer and friction cm the flow

Operating Conditions

examples shows the effects of heat
in vaneless diffusers. Three numer- ‘

ical examples are given: {1) isentropic compressible flow, (2) com-
pressible flow with friction, ati (3) c-essible flow with friction
and heat transfer.

ImI.etconditions. - For.the ffist ~oup of numerical examples the
flow conditions at the dWl%ser inlet (R = 1.0) are:

‘3-=
M2=

(Ttjl =

[tan f3)1.=

These conditions were estimated (by

3.022

1.370

941° R

3.829

methods given in appendix C) for
the following design and operating conditions of the impeller:

Compressor flow coefficient, ax . . . . . . . . . . . . . . . . . 0.75
Impeller tip Mach number,

%“”””*””””””””””””” ;“:
Impeller slip factcmj y... . . . . . . . . . . . . . . . . . . .
Impeller polfiropic efficiency, ~ . . . . . . . . . . . . . . . . 0.9
Compressor stagnation Met temperature, To, OR . . . . . . . . 520

Diffuser desi~. - Thb design characteristics of the diffuser are:

Passage height, H...... . . . . . . . . . . . . . . . . .. R-J
(constant flow mea normal to ~)

Walltemperature, Tw, %l . . . . . . . . . . . . . . . . . . . . 750
Fricwon psrameter, C . . . . . . . . . . . . . . . . . . . . .. O.O3O

[-( )

Cf = 0.003 (a relatively low value, see reference 4)
1%

sina~
= 10 (so that sin a is constant) 1

The Reynoldst analogy was used to deterudne the heat-transfer coefficient “
so that equation @2) was used to determine the change in total tempera-
ture with radius.

Results. - The results of the first group of three numerical
examples are given in figure 8. In figure 8(a) is shown the change in
M2 tith R fo the three numerical examples. The effect of friction
is to reduce $ at each radius R (%ecause, although the smaller
meridional velocity component

% ‘s ~~ased
as usual, the larger

—— -— —.-. —
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tangential component ~ is d.evreased)and the effect of heat transfer
from the fluid is to increase @ slightly (primarilybecause of the
reduced speed of sound at the lower temperature) for the magnitudes of
Tt and Tw involved in these examples.

In figure 8(b) is shown the change in P with R. As expected,
the effect of friction is to reduce P at each radius (primarily
because of the decreased values of ~, which require a smaller pressure
gradient for equilibrium). The effect of heat transfer from the fluid
is to raise P slightly for the magnitudes of Tt and ~ involved in
these examples.

In figure 8(c) is shown the change in flow tiection ~ w$th R.
The effect of friction is to reduce @ because w is reduced and ~
is increased to satisfy continuity with lower density due to lower P.
The effect of heat transfer from the fluid is to increase p slightly
because of the reduced value of ~ resulting from the increased value
of p.

In figure 8(d) is shown the flow path in the vaneless diffuser.
The effect of friction is to shorten the flow path because p is
decreased (fig. 8(c)). The effect of heat transfer is to lengthen the
path slightly.

In figure 8(e) is shown the change in polytropic, or small-stage,
efficiency ~ with radius R. The effect of friction is to reduce the
efficiency at each radius. The effect of heat transfer from the fluid
is to increase q greatly. In fact for the lar er values of R where

&1? is relatively small the term involvihg ~ -# becomes greater than

the term involmbg the friction paramster ~ (see equation (20a)) am,

1 %because for heat transfer from the fluid — —
T+ dR

is nOgative, q

becomes greater than 100 percent.
“

For the example with friction but no heat transfer it is interesting
to’note that, although the friction losses must be greater at the lower
values of R because of the larger velocities, the poly!nmpic effi-
ciency is higher. From equation (20a) the higher efficiency must result

frcm a higher rate of pressure rise ~ ~ compared with 7M2C at
H COS ~

.(

.

.

the lower values of R. In current compressor designs the local poly-
tropic efficiency at the lower values of R will be considerably reduced
(reference 4, for example) because of _ losses result- from the
nonuniform flow conditions at the impeller discharge.
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~ ~Sf3r effbiacy .(VD)2at R equal to 2.0 is determined by
equation (E6) of appendix E and is indicated for each of the three numer-
ical exa@es in figure 8(e). The value of (T )z, fw the example

1?with heat transfer, is considerably less than t e values of me poly-
tropic efficiency q at the larger values of R for this example,
because for these larger values of R the rate of pressure,riseis
smaller and therefore q has ~lesseffect upon the value of fqD)2.
Even so, the value of (~D)z for the example with friction and heat
transfer is almost 100 percent. But from figure 8(b) the pressure P
at R equal to 2.0 is not much Mff erent for the two mmples with and
without heat transfer (hutwith friction) so that the losses are about
equal for these examgles and (qD)z, which is considerably different,
is therefore not a reliable measure of the losses when heat transfer
effects ~e present.

For the example,with friction and no heat transfer the value of

(~D) is as low as 0.824 in spite of the relatively low friction
coefficient (~ = O.003) and in spite of neglecting the mixing losses
due to nonuniform “flowconditions at the impeller discharge. Thus, the
friction losses in most vaneless diffuser desiggs ate considerable and
result from the (usually) large ratio of wetted surface to flow area.
The diffuser efficiency can be improved by lower values for ~ (pro-
vided other design and flow variables remain unchanged) and these lower

rT
values for ~ can result from lower values of —,

%
which means, for

example, lar~r compressor fluw rates for a given impeller tip radius.

A general conclusion resulting from the ftist group of numerical
examples is that heat transfer tiom the fluid has the opposite effect cf
friction on pressure rise in vaneless diffusers and is therefare to be
destied. Heat transfer to the fluid, on the other hand, can be expected
to have the same effect as friction and is therefore to be avoided.

Effects of Diffuser Wall Spacing

The second group of numerical examples shows the effects of passage
height h (that is, spac~ of the diffuser walls normal to the mean
surface of revohtion) on the flow in vaneless diffusers. The losses
in a vaneless diffuser should increase with the velocity squared, with
the ratio of wetted perimeter (at each radius) to diffuser wall spacing
(that is, with the ratio of friction area to flcswarea), andtithtk
length of the flow path in the vaneless diffuser. For a given com-
pressor flow rate the square of the velocity and the ratio of wetted
perimeter to diffuser wall spacing increases as the diffuser wall.spactig
h is decreased, but the length of the flow path decreases. The object
of the second group of numerical examples is to determine the relative
magnitudes of these opposing effects on th losses in vaneless diffusers,
and to determine the optimum wall spacing h, if such an optimum exists.

-— —.. — -—— —. — —
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Diffuser desi~. - As for the first ggxmp of numerical examples the
diffusers of the second group were designed for constant flow area

(E= R-l) but with the diffuser wall spacing ~ at the impeller dis-
ckge (diffuser inlet), and therefore throughout the dMfuser, varying
(among examples) over a wide range. The values of ~ were selected
for the eight numerical examples of the second group such that the
friction aram~ter ~ varied from 0.010 to 0.038 in seven increments of
0.004. (! mies inversely with ~, equation (13d).) The friction
coefficient was assumed to be constant, that is independent of diffuser
wall spacing, and therefcwp the possibility of separated flow for large
spacing of the dtffuser walls was not considered. Heat-transfer effects
were not considered. The example for 1 = 0.030 was the same as that in .
the first group of numerical examples wtth friction but no heat transfer.

Inlet conditions. - Tor the second group of numerical examples the
diffuser inlet conditions varied with the diffuser wall spacing because
for a constant compressor.flowrate W the compressor flow coefficient
p (equation (~11), appendix C) varies inversely with the passage height
~ at the impeller tip. (Note that the blade height at the impeller
tip is also assumedto vary with ~ and this variation is assumed to
have no effect on the impeller efficiency, and so forth.) l?orthe
selected variation in @ the flow coefficient varies from 0.25 to 0.95
in seven increments of 0~10.
tions of the @eller are the
Thus,

Impeller tip l.lachnmiber, ~
Impeller slip factor, u . .

The remaiming design and operating condi-
same as for the first group of examples.

. . . . . . . . . . . . . . . . ..* 1.5

. . . . . . . ..O .OO,. . . . . 0.9— . .
Impel.lerpo@tropic efficiency, q . . . . . . . . . . . . . . . . 0.9
Compressor stagnation inlet temperature, To, OR . . . . . . . . . 520

The flow conditions at the diffuser inlet were estimated (by methods
given in appendix C) from the impeller design and operating conditions
ahd are given in the following table:

Example t v il %2

a o ●010 0.25 3.174 1.272 11.879 941

b .014 .35 3.157 1.283 8.453 941

c .018 .45 3.133 1.298 6.541 941

d .022 .55 3.103 1.317 5.317 941

‘e .026 .65 3.066 1.341 4.462 941

f .030 .75 3.022 1.370 3.829 941

g .034 .85 2.970 1.406 3.339 941

h .038 .95 2.909 1.448 2.945 941

{(

.

— ———— —.—
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Results. - The results of the second WOUP of eight numrical
examp~ given in figure 9. All results are based on the assumption
that as the diffuser wall spacing increases, that is as P decreases,
the friction coefficient remains constant and flow separation does not
occur on the diffuser walls. In figure 9(a) is shown the change in M?
with R for the eight examples. The effect of decreasing Cp (that is,
of increasing ~) is to decrease I@ at each value of R. This
decrease in 3? results primarily from the decrease in ~ resulting
from the increased flow area that occurs when ~ is increased.

In figure ~(b) is shoyn the change in P with R for various
values of ‘cp.The effect of decreasing T is to increase T because
M2 is decreased (fig. 9(a)).

The change in P with R for various values of ~ is shown in
figure ~c). As Q is decreased the velocity cchqmnent ~ decreases
so that the flow direction ~ increases as shown. M ~ approaches
zero, ~ approaches 90° for all values of R.

In figure 9@) is shown the flow path in the vaneless ~er fcm
the various values of cp. The effect of increasing V is to decrease
the length of the flow path because ~ is reduced (fig. 9(c)).

The change in polytropic efficiency q with R for the various
values of Cp is Shown refigure 9(e). The effect of decreasing ~ is
to increase q at the lsrger values of R. As the value of ~
decreases the length of the flow path increases (fig. 9(d)), which
should increase the diffuser losses, but 3? (fig. 9(a)) andthefric-
tionparameter L decrease, which should decrease the losses. At ~
equal to zero B is 900, or cos p is zero, and ~ is zero so that
the ratio ~/cos ~ contained in the expression for q (equation (20a))
becomes indeterminate. However, extrapolation of the results in
figure 9(f) indicates that q has its peak value for q equal to zero;
and thus, if separation does not occur and if the friction coefficient
cf is unaffectedly the iMffuser wall spacing, the diffuser efficiency
is always improved (slightly, see fig. 9(f)) by spacing the diffuser
walls farther a-. Furthermore, if the dff’fuserwalls are spaced
farther ap~ and the compressor flow rate is .jncreasedproportionately .
so that cp remains unchanged, the diffuser efficiency should be impruved
markedly because the ratio of wetted surface to flow area is decreased
without increasing the length of the flow path in the diffuser and with-
out introducing the risk of boundary-layer separation,which must other-
wise be expected if the diffuser walls are spaced far apart. Thus, as
also concluded from the first group of numerical examples, the diffuser
efficiency can be improved by increased compressor flow rates for a
given im@ller tip radius so that the iUffuser walls canbe spaced
farther apart without resulting in boundary-layer separation or
increasing the length of the fluw path.
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figure 9(f) is shown the effect of cp on the diffuser efficiency
As expected from figure 9(e), (qD)2 ticreases as ~ ~dr;~~j

.

rate of increase is less for the smaller values of cp
case are large gains in efficiency to be realized by decreasing ~,
that is, increasing the iWfuser wall spacing. Thus, unless the flow

.

rate is increased proportionately so that cp remains constant, very wide
spacing of the diffuser walls is not recommended because of (only) a
small gain in efficiency and a ~eat risk of boundary-layer separation.

AVaneless Diffuser Uesign Froblem

The
vaneless
UPfuser

and

third part of the section on numerical examples is a sample
~fuser design problem. The design variables in a vaneless
are

H = H(R)

a = a(R)

In this sample design problem a(R) will be specified (constant
equal to 90°) and the design problem~ll be to determine H(R)
prescribed variation In ~.

and
for a

For purposes of demonstrating the design method it is assumed that
the deceleration of ~ is the.criterion for boundary-layer separation
in a vaneless tiser and that the criterion is that given in refer-
ence 5, page 159, so that a mfe rate of deceleration is

where 6 is proportional to
of this design example it is
the effective thickness of a
less diffuser. Thus,

the boundary-layer thickness. For purposes
assumed that b is equal to h/2, which is
fully developed boundary layer in the vane-

. ()@/2)% % -005

%T %=”

or

——
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1% -1.—
qdR ‘z-

M rT/~ is equal h 10. Eecause of the assun&ions involved this

%specified variation in —
m

with H may have no practical significance

with regard to vaneless ~fuser performance and has been selected only
to demonstrate an application of the desl~ method. It shouldbe
pointed out that design variations in H tiect primarily the velocity
component .% and through this component the flow direction ~.

Inlet conditions. - The impeller design and
are the same,as for the first group of numerical
diffuser inlet conditions ere the same

‘1 = 3.022

# = 1.370

(Tt)l = 941° R

“ @an~)l =3.829

operating conditions
examples and so the

Diffuser design. - The variation in H with R is to be deter-
mined. Heat-transfer effects are neglected, and the value of the fric-
tion parameter t is the same as for the first group of numerical
examples (0.030).

Results. - The results of the design problem are given infigme 10.
I. dqm

In figure 10(a) is shown the variations in H, —— ~, P, ~, and

1%
~dR’

~ with radius R. As specified, is equal to -
QdR

~l. In order

to accomplish this variation, H at first-decreaseswith increasing R
and then increases to approximately its initial value at R equal to
2.0. At the larger values of R this variation in H results in some-
what wider spacing of the diffuser walls than existed in the previous
numerical examples where the wall spacing decreased continuously with
increasing R in order to maintain a constant flow area normal to ~.
As a result of this wider spacing of the diffuser walls the values of ~
are somewhat higher (in keeping with the results of the second group of
numerical examples) than for the previous examples with the same values
of cp and ~. m ~riation h p with R was slightly more than 3°
so that the flow path (fig. 10(b)) is approximately a logarithmic sptial.

—..-.-—.—. ____ ._ ——.
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SUMMARY al?ImsuEc’sfmD CONCLUSIONS
.

An analysis method and a design method have been developed for one-
dimensional, compressible flow with friction, heat transfer, and arbi-
trary ~ea change in vaneless d3ffusers with arbitrary profiles in the
axial-radial plane. The effects of mixing losses due to nonumifcmm flow
conditions at the impeller discharge are not considered. In the analysis
method the variation in fluid properties, including the velocity and
flaw direction, canbe determined as a function of radius for a prescribed
variation h ~fuser wall.spacing with radius. In the design method
the variation in Wfuser wall spachg and all fluid properties except
one can be determined as a function of radius for a prescribed variation
in the one fluid property. For efficient diffuser designs the selection
of the one fluid property and its opthmm prescribed variation will
depend on viscous flow effects that are considered inboundary-layer
studies but are not investigated in this report.

Three ~oups of numerical examples are presented in which the
effects of friction, heat transfer, and diffuser wall spacing are
investigated; and a sample design problem is presented. As a result of
these examples it is concluded that:

1. Heat transfer from the fluid has the opposite effect of friction ,
on pressure rise in vaneless diffusers and is therefore to be desired.
Conversely, heat transfer to the fluid has the same effect as friction
and is therefore to be avoided.

P

2. E the friction coefficient is unaffected by the diffuser wall
spacing, and if flow separation does not occur, the diffuser efficiency
is improved slightly (for a given compressor flow rate) by spacing the
diffuser walls farth= apart.

3. llvenwith relatively low friction coefficients and neglecting
mixing losses at the impeller tip, the friction losses in most vaneless
diffuser designs are considerable, as indicated by computed diffuser
efficiencies in the low 80:s, and these losses result from the usually
large ratio of wetted surface to flow area in vaneless diffusers.

4. IHffuser efficiencies can be improved by increased compressor
flow rates for a given impeller tip kadius so that the diffuser walls can
be spaced farther apart (thus, reducing the ratio of wetted surface to
flow srea) without increasing the length of the fl”bwpath in the diffuser.

5. In the presence of even small heat-lmansfer effects the usual
definition of rllffuserefficiency, which definition neglects corrections
for heat transfer, is not a measure of the dWfuser losses.

Lewis Flight Propulsion Laboratory
I?ationalAdvisory Committee for Aeronautics

Cleveland, Ohio, Septeniber11, 1951

.
—
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The following syribolsare used in this report:

Cf

co

Cp

C-fj

%

H

h
.

i

J

M

MT

n

P

P

Po

dQ

annulus flow area at impeller tip, equation (C12)

local speed of sound

skin-friction coefficient, equation (B2)

stagnation speed of sound upstream of impeller

spec~ic heat at constant pressure

local stagnation speed of sound

acceleration due to gravity

effective passage height, or Mffuser wall.spacing,
ratio, h/lq

effective passage height, or diffusa” wall.spacing

coefficient of heat transfer, equation (ha)

influence coefficients, equation (1.$1)

enthalpy

mechanical.equivalent of heat

local Mach number, eqyation (5)

@eller tip Mach nuniber,eqmtion (C3)

polytropic exponent, equation (C6)

pressure ratio, p/p.

static (stream) pressure

stagnation pressure upstresm of hpeller

heat transfer rate from the fluid
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velocity

velocity component in meridional, or axial-radial,
plane, equation (3)

% velocity components b r-, 6-, and z-directions,
respectively

radius ratio, r/rT

perfect gas constant

cylindrical coordinates, e
counterclockwisedirection
from negative z-direction

static (stream) temperature

considered positive in
when rtl-planeis viewed

stagnation temperature upstream of ~eller “
.-.

local stagnation, or total, temperature
)

d3ffuser wall te@erature

time

compressor flow rate

dependent variable

slope of center ltie between Mffuser walls in meri-
dional, or axial-radial plane, equation (2)

flow direction on me~ surface of revolution between
diffuser walls, equation (4a)

ratio of specific heats

small f=te increment

friction par~ter, equation (13d)

polytropic, or small-stage, efficiency, eqyation (El)

~user adiabatic efficiency based upon change in flow
conditions for change in radii from 1.0 to R, equa-
tion (X5)

. . . .

——...-
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P

P.

Pt

T

P

u)

Subscripts:

a

i

R

T

1, 2

impeller slip factor

static (stream) weight density

stagnation density upstream of hpeller

local stagnation density

shear stress due to skin friction

compressor flow coefficient, eqtition (Cll)

angular velocity of hrpeller -.

actual

ideal.

value at R

impeller tip

value at R equal to 1.0 or 2.0

..

——-..—— ______ -—— .
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AEI?ENDIXB

m~ EQUATIONS

Meridional and tangential equilibrium equations are developed for a
fluid particle on the mean surface of revolution in a vaneless cliffuser.

Meridional equilibrium. - The equation for meridional equilibrium
of a fluid particle (fig. 6) in the direction of ~ on the mean surface

of revolution is obtained from a balance of the pressure aud shear
forces with the force re@ed for acceleration.

The clifferential pressure forces (opposed to the direction of ~)
are equal to the ~ferential change of end forces on the particle minus
the component of the clifferential side forces on the particle in the
direction of ~,

Diff=enti.al pressure forces = _ - _ (Bl)

where the component of the tif erential side forces in the direction of
~ (last t= in equation (Bl)) is equal to the pressure p multiplied
b~ the projetted area (in the Mrection of
the particle (fig. 6).

The ~f =ential shesr stress T on a
the ~ection of q and is given by

cjJ of the side surfaces of

itlffuserwall is opposed to

(B2)

where c. is the skin friction coefficient. The clifferential shear
forces A the meridional
Opposed to the direction
ltromequation (B2),

Differential

The acceleration of

tiection on the fluid particle in figure 6 sre
of ~ and act on both walls of the,ctlffuser.

shear forces =2Tcos @-’#+

.##cosprs&’y (B3)

the fluid particle in the direction opposed to
is mde up of: (1) the compon~t of the centripetil accel-~ation

%sti a, and (2) the negative of the acceleration ~. But,

.

—.
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.

#

so that the dif’f=ential face required for acceleration of the fkid
particle in figure 6 becomes

( )Differential force reqtied

(

=Qhraear %26tia d%
for acceleration in direc-

~ Sti a T
)

-%m~s~a
tion opposed to ~

The sum of
equal the force
(B3), and (B4)

the differential pressure
required for acceleration

(B4)

forces and shesr forces must
so that from equationp (Bl),

gdp+ Cfqz Cos p q$ d%
——
par hsina ‘~-!m~

(8)

Equation (8) is
title on the me= surface of revolution in a vaneless Uffuser.

the equation fa meridional equi13.briumof a fluid par-

Tangential equilibrium. - The equation for equi~brium of a fluid
partiCk (fig. 6] in the tangential direction on the mean surface of
revolution is obtained from a balance of the shesr forces with the force
required for acceleration.

The differential shear forces in the tangential direction on the
fluid particle in figure 6 are opposed to the direction of ~ amd act
on both walls of the cliffuser. l%romequation (B2),

Differential shear forces =
rdedr

2Tsin~~

P&stipyy
“fg (B5)

The tangential acceleration of the fluid particle opposed to the
direction of ~ is mwle up of: (1) the negative of the tangential

u(3%
acceleration r — —

dtr~ and (2) the negative of the Coriolis accelera-

sixia .
tion 2~q9 ~. But,

.

..— .—— —— .—— -——-- —. —- ———.——
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so that the
particle in

l%ar %ldr——-— —
‘;dr dt -2 dt

differential force
figure 6 becomes

required for acceleration of the fluid

/Dfiferential force required~

\
(.J &:: ~ )

~~d.na

for acceleration in direc-

)
g

~~sf.na+ r
tion opposed to

%

(B6)

The differential shear force must equal the diff=ential force
required for acceleration so that from equations (B5) and (B6)

Cfqz sin p ‘% %%
hsina ‘%ll F+Y

(9)

[
Equation 9) is the equation for tangential equilibrium of a fluid
particle fig. 6) in the tangential direction on the mean surface of
revolution in a vaneless Mfus=.

.

,>
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fwPlmDIx c

.

ESTIMATED VAiXES OF Tt, ~, P, AND TANf3 AT DIFFUSER

INLET (INEEWR TIP)

Total temperature. - The total temperature (~) ~ at the diffuser

inlet, or hnpeller tip, can be obtained from the steady flow ener~ equa-
tion, where for convenience heat-tiansfer effects have been considered
negligible,

(cl)

where w is the impeller slip factor and m is
the impeLler so that p(umT)‘/g is the hpelhr
But

and

so that dividing equation (Cl) by J~To

the angular velocity of
work per pOIXldof fluid.

T1

~=
~+T-+

[ 1

(4 - ,2) ~z-.*
co

where the impeller tip Mach nudmr ~ is defined by

‘T
%=~

The total temperature (Tt)1 is given by

and
(!l/J~z— (equal to ~~z) are equal2
co

equation (C2) when

to zero so that

(C2)

(C3)

(~)lz

co2

(C4)

Pressure. - The pressure PI at the diffuser filet is obtained
from the temperature ratio (equation (C2)) by

—.— . .—— —
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where the flow h the impeller, which involves
zlesentedby a polytropic process for which the
is re~ted to the pol.ytropicefficiency of the
ence 8, p. 449, for exmple)

(C5)

viscous losses, is rep-
polyizcopicexponent n
impeller q by (refer-

(C6)

The quantity (~) 1 in eqmtion (C2)is unlmown but wilJ be determined

later from continuity considerations.

~ like manner the bnsity P1 is related to the temperature ratio
(equation (C2)) by

1

PI
z

()
‘1

~= q
(C7)

Mach nudmr. - The local Mach nwikr squared (M?)~ at the diffuser
Net is defined by

(Qlz + (Q12
(M?)l=

.2 =

where T~Tl is given by equation (C2), where

(Ql
~“%

(9.J~
and where — is determined frmn continuity

co
continuity

or

(9.J~—=
c
o -+PI P.

(C9)

considerations. From

, (Clo)

— —-..——.
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.

.

where the compressor flow coefficient ~ is clef-d by

q) *-L
Qo%!co

(Cll)

(QI
Equations (C7) and (C1O) are solved s~taneously for — so that
equation (C8) can be solved fm (Ml) . co

Flow d5rection. - .Thetangent of the flow direction ~1 at the
diffuser inlet is defined by

(c13)

mUS, (Tt)1, Pl,M12,~ (* 9)L - -t~ted W L=wL-
tions (C4), (C5), (C8), @ (CI.3),respectively.
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APPENDIX D

COND121!IONFOR MAXIMUM, OR CHOKE, FUXl IN VANELESS DIFFUSERS

3% W is the flow

where p is related to
by (reference 7, p. 26,

rate through a vaneless diffuser

w = 2mAlp~ (Dl) ‘

the stagnation density. pt at a given =Uus r
for example)

.

(1.uthe presence of heat _fa md friction pt
radius.) At any given radiuE as ~ is incr-sed

increases until a mssdmum, or choke, flow occms.
when

a’1

%’0

y-l

(D2)

or, from equation (Dl)~

but, from equation (D2),

is a function of

from low values w
Thss maximum occurs

.

where fram ref-nce 7, page 26, fcm exsmple

()2+c#~ y-l %
2

a

%2

so that equation (D4) becomes

(D3)

(D4)

(D3)

—.
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where

37

After equations (D3) and (D~) are codd.ned

%l=c (D6)

so that the maximum, or choke, flow occurs in vaneless CUffusas when
the meridional component of velocity ~ is eq~l to the lo~l speed of

sound C. Expressed in terms of M2 equation (D6) becomes

O= JP-t3ec2p (D7),

which is the condition for ~u% or choke~ flow h weless cliffusers.

—.— ,... .—
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SMALL-sw

The smaU-stage, or

APPENDIX E

m~~~ AND DIFFUSER

pol@opic, efficiency

lzFl?Iemm

q at a given radius
R on the mean surface of revolution in a van~es; diffuser is deftied
as the ratio of the ideal to the actual differential change in static
enthalpy with radius reqtied to accomplish the actual differential
change in static pressure tith radius

where the ideal Mfferential change
(di/dr)~ is given by (reference 6,

cl

ai .ld~
G par

in static enthalpy with radius
p. 102)

.Rhldp
par

(El)

(E2)

and where the actual differential change in static enthal.pywith radius
(a+r)a is %y definition

Equation (El) is the usual definition of small-stage,
efficiency and assumes that heat-transfer effects are
equations (El.)to (E3) and equation (13e)

la?——
~= Pm

Yld!I’-——
y-l T r3R

which fr-binequations (6a) sad (13c) becomes

la?

(E3)

or polytropic,
negligible. From

(E4)

(20a)

.

———
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Equation (20a) gives the small-stage, or polytropic, efficiency h terms
of the local pressure differential, the total temperature differential
and the p-ter ~,
Cient.

In the absence of

tions (13c) and (1.!5C)

which involves

heat transfer

the local s-~-f riction coeffi-

A!%
qm

equsls zero ~a frmn equa-

so that eqpation (20a) becomes

L(M?- sec2 fl)q=l -

C(& - *2 P) - Cos p

(20b)

Equation (20b) expresses q in terms of the friction parameters [ and
the diffuser geome~.

me ~er effici=w (~)R, which measures the diffuser per-

formance between the diffuser inlet at R equals 1.0 and a petit R
the mean surface of revolution h the vaneless d3ffuser, is defined.
the ratio of the ideal to the actual static temperature rise required
accomplish the actwl static pressme rise between the radii 1.0 and

where the idesl

static pressure

temperature ratio
()
% @ re~ted to We ac~

% i
ratio by

Y-1

(3A%)’

(E5)

— ..— —.
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so that eqyation (E5) becomes

NACA TN 2610

r-l

,%,,=(3‘ ‘1
%1
q-

(E6)

Equation (E6) gives (~)R in terms of the lmmwn values of p and T
at the radii 1.0 and R. E R approaches 1.0,

-@

T(Jr )
r

+(32
-+-y- ()al + r-l (3P

r -F
1 1

end

so that

which corresponds
by egyation (E4).

()
la?

(nJl= ;ym
~ll?ai 1

to the def~tion for the small-stage efficiency given
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=5=
C-2461

Figure2. - Mixed-flewimpellerandsemivanelessdiffuserwithfront shroudremoved.
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Figure 3. - Diffuser profile, velocitY cowonentsj ~d
coordinates in meridional, or axial-radial,plane.

— .—



G
\

*<
+Q

+

%

‘“ x

v
i-’

Center line

between dz
diffueer wells de

Z-axia
+

Figure 4. - Fluid particle on surface of revolution

&Lffuser walls.
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Figure 6. - Fluid psrticle with pressure and shear forces.
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Figure 7. - Develuped view of mean surface
revolution (fig. 5) in vicinity of R,
showing relation between ~, R de, and
m—.

sin a
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Figure 8. - continued. First POW d ~ti eXIUFIk6> BhW@ e.ffeCtB of

friction ala heat transfer.
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(b) Variatian in Static ~S6we ratio vith radlua .

Figure 9. - Cmtimld. 2econd gmllp of numarical exmples,
S- effmt of diffUSer wall SF=Ming as affected by

Ch@ngeE h Canpremor m Coefficient rp.
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(c) Variation In flow direction with radius.
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(d)F1.avwth for .fn a .1.0.

Figme 9. - Continued. SecOmi guup of numerical examples, showing effect of diffuser wall sp3cing
e.eeffected by clmngea in compremm flow cc.sfficientqJ.
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